

CompTIA Cybersecurity Analyst (CySA+) Certification Exam Objectives

EXAM NUMBER: CSO-003

About the Exam

The CompTIA Cybersecurity Analyst (CySA+) certification exam will certify the successful candidate has the knowledge and skills required to:

- Detect and analyze indicators of malicious activity
- Understand threat hunting and threat intelligence concepts
- Use appropriate tools and methods to manage, prioritize, and respond to attacks and vulnerabilities
- Perform incident response processes
- Understand reporting and communication concepts related to vulnerability management and incident response activities

EXAM DEVELOPMENT

CompTIA exams result from subject matter expert workshops and industry-wide survey results regarding the skills and knowledge required of an IT professional.

CompTIA AUTHORIZED MATERIALS USE POLICY

CompTIA Certifications, LLC is not affiliated with and does not authorize, endorse, or condone utilizing any content provided by unauthorized third-party training sites (aka "brain dumps"). Individuals who utilize such materials in preparation for any CompTIA examination will have their certifications revoked and be suspended from future testing in accordance with the CompTIA Candidate Agreement. In an effort to more clearly communicate CompTIA's exam policies on use of unauthorized study materials, CompTIA directs all certification candidates to the <u>CompTIA Certification Exam Policies</u>. Please review all CompTIA policies before beginning the study process for any CompTIA exam. Candidates will be required to abide by the <u>CompTIA Candidate Agreement</u>. If a candidate has a question as to whether study materials are considered unauthorized (aka "brain dumps"), he/she should contact CompTIA at <u>examsecurity@comptia.org</u> to confirm.

PLEASE NOTE

The lists of examples provided in bulleted format are not exhaustive lists. Other examples of technologies, processes, or tasks pertaining to each objective may also be included on the exam, although not listed or covered in this objectives document. CompTIA is constantly reviewing the content of our exams and updating test questions to be sure our exams are current, and the security of the questions is protected. When necessary, we will publish updated exams based on existing exam objectives. Please know that all related exam preparation materials will still be valid.

CompTIA

TEST DETAILS

Required exam	CS0-003
Number of questions	
Types of questions	Multiple-choice and performance-based
Length of test	
Recommended experience	4 years of hands-on experience as an incident response analyst or security operations center (SOC) analyst

EXAM OBJECTIVES (DOMAINS)

The table below lists the domains measured by this examination and the extent to which they are represented.

DOMAIN PERC		PERCENTAGE OF EXAMINATION	CENTAGE OF EXAMINATION	
1.0	Security Operations	33%		
2.0	Vulnerability Management	30%		
3.0	Incident Response Managemer	nt 20%		
4.0	Reporting and Communication	17%		
Total		100%		

.1.0 Security Operations

Explain the importance of system and network architecture concepts in security operations.

Log ingestion

- Time synchronization
- Logging levels
- Operating system (OS) concepts
 - Windows Registry
 - System hardening
 - File structure
 Configuration file locations
 - System processes
 - Hardware architecture
- Infrastructure concepts
 - Serverless
 - Virtualization
 - Containerization

- Network architecture
 - On-premises
- Cloud
- Hybrid
- Network segmentation
- Zero trust
- Secure access secure edge (SASE)
- Software-defined networking (SDN)
- Identity and access management
 - Multifactor authentication (MFA)
 - Single sign-on (SSO)
- Federation

- Privileged access management (PAM)
- Passwordless
- Cloud access security broker (CASB)
- Encryption
 - Public key infrastructure (PKI)
 - Secure sockets layer (SSL) inspection
- Sensitive data protection
 - Data loss prevention (DLP)
 - Personally identifiable information (PII)
 - Cardholder data (CHD)

1.2 Given a scenario, analyze indicators of potentially malicious activity.

Network-related

- Bandwidth consumption
- Beaconing
- Irregular peer-to-peer communication
- Rogue devices on the network
- Scans/sweeps
- Unusual traffic spikes
- Activity on unexpected ports
- Host-related
 - Processor consumption
 - Memory consumption
 - Drive capacity consumption

- Unauthorized software
- Malicious processes
- Unauthorized changes
- Unauthorized privileges
- Data exfiltration
- Abnormal OS process behavior
- File system changes or anomalies
- Registry changes or anomalies
- Unauthorized scheduled tasks
- Application-related
 - Anomalous activity
 - Introduction of new accounts

- Unexpected output
- Unexpected outbound communication
- Service interruption
- Application logs
- Other
 - Social engineering attacks
 - Obfuscated links

 ٩

^{1.3} Given a scenario, use appropriate tools or techniques to determine malicious activity.

- Tools
 - Packet capture
 - Wireshark
 - tcpdump
 - Log analysis/correlation
 - Security information and event management (SIEM)
 - Security orchestration, automation, and response (SOAR)
 - Endpoint security
 Endpoint detection and response (EDR)
 - Domain name service (DNS) and Internet Protocol (IP) reputation
 WHOIS
 - AbuseIPDB
 - File analysis

- Strings
- VirusTotalSandboxing
- Joe Sandbox
- Cuckoo Sandbox
- Common techniques
 - Pattern recognition
 Command and control
 - Interpreting suspicious commands
 - Email analysis
 Header

 - Impersonation
 - DomainKeys Identified Mail (DKIM)
 - Domain-based Message Authentication, Reporting, and Conformance (DMARC)

- Sender Policy Framework (SPF)
- Embedded links
- File analysis
 Hashing
- User behavior analysis
 Abnormal account activity
 Impossible travel
- Programming languages/scripting
 - JavaScript Object Notation (JSON)
 - Extensible Markup Language (XML)
 - Python
 - PowerShell
 - Shell script
 - Regular expressions
- Compare and contrast threat-intelligence and threat-hunting concepts.
 - Threat actors
 - Advanced persistent threat (APT)
 - Hacktivists
 - Organized crime
 - Nation-state
 - Script kiddie
 - Insider threat
 Intentional
 - Unintentional
 - Supply chain
 - Tactics, techniques, and procedures (TTP)
 - Confidence levels
 - Timeliness
 - Relevancy
 - Accuracy

- Collection methods and sources
 - Open source
 - Social media
 - Blogs/forums
 - Government bulletins
 - Computer emergency
 - response team (CERT)
 - Cybersecurity incident response team (CSIRT)
 Deep (derly use)
 - Deep/dark web
 - Closed source
 - Paid feeds
 - Information sharing
 - organizations
 - Internal sources
- Threat intelligence sharing
 - Incident response

- Vulnerability management
- Risk management
- Security engineering
- Detection and monitoring
- Threat hunting
 - Indicators of compromise (IoC)
 - Collection
 - Analysis
 - Application
 - Focus areas
 - Configurations/
 - misconfigurations Isolated networks
 - Business-critical assets
 - and processes
 - Active defense
 - Honeypot

 ٩

1.5 Explain the importance of efficiency and process improvement in security operations.

- Standardize processes
 - Identification of tasks suitable for automation
 Repeatable/do not require human interaction
 - Team coordination to manage and facilitate automation
- Streamline operations
 - Automation and orchestration
 - Security orchestration, automation, and response (SOAR)
 - Orchestrating threat intelligence data
 - Data enrichment
 - Threat feed combination
 - Minimize human engagement
- Technology and tool integration
 - Application programming interface (API)
 - Webhooks
 - Plugins
- Single pane of glass

.2.0 Vulnerability Management

^{2.1} Given a scenario, implement vulnerability scanning methods and concepts.

- Asset discovery
 - Map scans

 \square

- Device fingerprinting
- Special considerations
 - Scheduling
 - Operations
 - Performance
 - Sensitivity levels
 - Segmentation
 - Regulatory requirements
- Internal vs. external scanning
- Agent vs. agentless

- Credentialed vs. non-credentialed
- Passive vs. active
- Static vs. dynamic
 - Reverse engineering
 - Fuzzing
- Critical infrastructure
 - Operational technology (OT)
 - Industrial control systems (ICS)
 - Supervisory control and data acquisition (SCADA)
- Security baseline scanning
- Industry frameworks

- Payment Card Industry Data Security Standard (PCI DSS)
- Center for Internet Security (CIS) benchmarks
- Open Web Application Security Project (OWASP)
- International Organization for Standardization (ISO) 27000 series

- ^{2.2} Given a scenario, analyze output from vulnerability assessment tools.
 - Tools
 - Network scanning and mapping
 Angry IP Scanner
 - Maltego
 - Web application scanners
 - Burp Suite
 - Zed Attack Proxy (ZAP)
 - Arachni
 - Nikto
 - Vulnerability scanners
 - Nessus
 - OpenVAS

- Debuggers
 - Immunity debugger
 - GNU debugger (GDB)
- Multipurpose
 - Nmap
 - Metasploit framework (MSF)
 - Recon-ng
- Cloud infrastructure assessment tools
 - Scout Suite
 - Prowler
 - Pacu

2.0 | Vulnerability Management

^{2.3} Given a scenario, analyze data to prioritize vulnerabilities.

- Common Vulnerability Scoring System (CVSS) interpretation
- Attack vectors
- Attack complexity
- Privileges required
- User interaction
- Scope

- Impact
 - Confidentiality
- Integrity
- Availability
- Validation
 - True/false positives
 - True/false negatives

- Context awareness
 - Internal
 - External
 - Isolated
- Exploitability/weaponization
- Asset value
- Zero-day

^{2.4} Given a scenario, recommend controls to mitigate attacks and software vulnerabilities.

- Cross-site scripting
 - Reflected
 - Persistent
- Overflow vulnerabilities
 - Buffer
 - Integer
 - Heap
 - Stack
- Data poisoning

- Broken access control
- Cryptographic failures
- Injection flaws
- Cross-site request forgery
- Directory traversal
- Insecure design
- Security misconfiguration
- End-of-life or outdated components

- Identification and authentication failures
- Server-side request forgery
- Remote code execution
- Privilege escalation
- Local file inclusion (LFI)/remote file inclusion (RFI)

2.5 Explain concepts related to vulnerability response, handling, and management.

- Compensating control
- Control types
 - Managerial
 - Operational
 - Technical
 - Preventative
 - Detective
 - Responsive
 - Corrective
- Patching and configuration management
 - Testing
 - Implementation
 - Rollback
 - Validation
- Maintenance windows

- Exceptions
- Risk management principles
 - Accept
 - Transfer
 - Avoid
 - Mitigate
- Policies, governance, and servicelevel objectives (SLOs)
- Prioritization and escalation
- Attack surface management
- Edge discovery
- Passive discovery
- Security controls testing
- Penetration testing and adversary emulation
- Bug bounty

- Attack surface reduction

- Secure coding best practices
 - Input validation
 - Output encoding
 - Session management
 - Authentication
 - Data protection
 - Parameterized queries
- Secure software development life cycle (SDLC)
- Threat modeling

•3.0 Incident Response and Management

^{3.1} Explain concepts related to attack methodology frameworks.

- Cyber kill chain
 - Reconnaissance
 - Weaponization
 - Delivery
 - Exploitation
 - Installation

- Command and Control (C2)
- Actions and objectives
- Diamond Model of Intrusion Analysis
 - Adversary
 - Victim

- Infrastructure
- Capability
- MITRE ATT&CK
- Open Source Security Testing Methodology Manual (OSS TMM)
- OWASP Testing Guide

3.2 Given a scenario, perform incident response activities .

- Detection and analysis
 - IoC
 - Evidence acquisitions
 - Chain of custody
 - Validating data integrity
 - Preservation
 - Legal hold
 - Data and log analysis

- · Containment, eradication,
 - and recovery
 - Scope - Impact
 - Isolation
 - Remediation
 - Re-imaging
 - Compensating controls

3.3 Explain the preparation and post-incident activity phases of the incident management life cycle.

• Preparation

- Incident response plan
- Tools
- Playbooks

- Tabletop
- Training
- Business continuity (BC)/ disaster recovery (DR)
- Post-incident activity
 - Forensic analysis
 - Root cause analysis
 - Lessons learned

•4.0 Reporting and Communication

⁴¹ Explain the importance of vulnerability management reporting and communication.

- Vulnerability management reporting
 - Vulnerabilities
 - Affected hosts
 - Risk score

 \bigcap

- Mitigation
- Recurrence
- Prioritization
- Compliance reports
- Action plans
 - Configuration management
 - Patching

- Compensating controls
- Awareness, education, and training
- Changing business requirements
- Inhibitors to remediation
 - Memorandum of understanding (MOU)
 - Service-level agreement (SLA)
 - Organizational governance
 - Business process interruption
 - Degrading functionality
 - Legacy systems

- Proprietary systems
- Metrics and key performance indicators (KPIs)
 - Trends
 - Top 10
 - Critical vulnerabilities and zero-days
- SLOs
- Stakeholder identification and communication

Explain the importance of incident response reporting and communication.

- Stakeholder identification and communication
- Incident declaration and escalation
- Incident response reporting
 - Executive summary
 - Who, what, when, where, and why
 - Recommendations
 - Timeline

- Impact
- Scope
- Evidence
- Communications
 - Legal
 - Public relations
 Customer communication
 Media
 - Regulatory reporting
 - Law enforcement

- Root cause analysis
- Lessons learned
- Metrics and KPIs
- Mean time to detect
- Mean time to respond
- Mean time to remediate

CompliA

- Alert volume

CompTIA CySA+ CSO-003 Acronym List

The following is a list of acronyms that appears on the CompTIA CySA+ CSO-003 exam. Candidates are encouraged to review the complete list and attain a working knowledge of all listed acronyms as part of a comprehensive exam preparation program.

Acronym	Spelled Out	Acronym	Spelled Out
API	Application Programming Interface	OT	Operational Technology
APT	Advanced Persistent Threat	OWASP	Open Web Application Security Project
BC	Business Continuity	PAM	Privileged Access Management
C2	Command and Control	PCI DSS	Payment Card Industry Data Security
CASB	Cloud Access Security Broker		Standard
CERT	Computer Emergency Response Team	PII	Personally Identifiable Information
CHD	Cardholder Data	PKI	Public Key Infrastructure
CIS	Center for Internet Security	RFI	Remote File Inclusion
CSIRT	Cybersecurity Incident Response Team	SASE	Secure Access Secure Edge
CVSS	Common Vulnerability Scoring System	SCADA	Supervisory Control and Data Acquisition
DKIM	Domain Keys Identified Mail	SDLC	Software Development Life Cycle
DLP	Data Loss Prevention	SDN	Software-Defined Networking
DMARC	Domain-based Message Authentication,	SIEM	Security Information and Event Management
	Reporting, and Conformance	SLA	Service-Level Agreement
DNS	Domain Name Service	SLO	Service-Level Objective
DR	Disaster Recovery	SOAR	Security Orchestration, Automation, and
EDR	Endpoint Detection and Response		Response
GDB	GNU Debugger	SPF	Sender Policy Framework
ICS	Industrial Control Systems	SSL	Secure Sockets Layer
loC	Indicators of Compromise	SSO	Single Sign-On
IP	Internet Protocol	TCP	Transmission Control Protocol
ISO	International Organization for	TTP	Tactics, Techniques, and Procedures
	Standardization	XDR	Extended Detection Response
JSON	JavaScript Object Notation	XML	Extensible Markup Language
KPI	Key Performance Indicator	ZAP	Zed Attack Proxy
LFI	Local File Inclusion		
MFA	Multifactor Authentication		
MOU	Memorandum of Understanding		
MSF	Metasploit Framework		

OpenVAS Open Vulnerability Assessment Scanner

Operating System

OSSTMM Open Source Security Testing Methodology Manual

OS

CompTIA CySA+ CSO-003 Hardware and Software List

CompTIA has included this sample list of hardware and software to assist candidates as they prepare for the CySA+ CSO-003 certification exam. This list may also be helpful for training companies that wish to create a lab component for their training offering. The bulleted lists below each topic are sample lists and are not exhaustive.

Equipment

- Workstations (or laptop) with ability to run VM
- Firewall
- IDS/IPS
- Servers

Software

- Windows operating systems
- Commando VM
- Linux operating systems
 - Kali
- Open-source UTM appliance
- Metasploitable
- SIEM
 - Greylog
 - ELK
 - Splunk
- TCPDump
- Wireshark
- Vulnerability scanner (i.e., OpenVAS)
- Nessus
- Access to cloud instances
 - Azure
 - AWS
 - GCP

